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Directional Analysis of SAR Images
Aiming at Wind Direction

Wolfgang Koch

Abstract—Currently, the retrieval of wind fields from synthetic
aperture radar (SAR) images suffers from inadequate knowledge
of the wind direction. State-of-the-art spectral analysis works fine
on open seas, but is limited in spatial resolution. The method de-
scribed here is based on the local gradients computed with stan-
dard image processing algorithms. It handles image features not
caused by wind and can be applied to irregularly shaped regions.
The new method has already been applied to many images from
the European Remote sensing Satellite SARs and RADARSAT-1
ScanSAR, usually supplying reasonable wind fields. The spatial
sampling most frequently used was 20 20 and 10 10 km2.
In some cases, samplings down to 1 1 km2 were tested. This
paper describes the local gradients method including the filtering
of nonwind generated image features and gives some application
examples.

Index Terms—Automatic wind direction retrieval, image fil-
tering, image processing, numerical recipe, ocean winds, synthetic
aperture radar (SAR), wind streaks.

I. INTRODUCTION

ONE OF THE MAIN obstacles for the derivation of wind
speeds from synthetic aperture radar (SAR) images is the

lack of knowledge of the wind direction. Methods in use are,
for example, assuming a fixed direction from a measurement
for the whole image, or interpolation of the direction of wind
fields from numerical weather models [1]–[3]. Neither method
is really satisfying, as the information is too sparse and generally
not at the right time. Estimating the wind direction directly from
the SAR image is a much more attractive approach. This oppor-
tunity arises because there are several physical effects causing
features in SAR images that are aligned with the wind direc-
tion, e.g., boundary layer rolls [4], [5], Langmuir cells, surfac-
tant streaks, foam and water blown from breaking waves, or
wind shadowing. The spacing of the boundary layer rolls in the
cross-wind direction is reported to be from 1–9 km, depending
on the properties of the marine boundary layer. Levy and Brown
[6] state that boundary layer rolls were present in 44% and ab-
sent in 34% of 1882 SAR images. Wind shadows at lee coasts
or behind marine platforms allow for the distinction of the up
and down wind direction.

Spectral methods for estimation of wind directions in
SEASAT SAR images were demonstrated in [4]. Application
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on ERS SAR images was shown in [7]–[9], and [10]. Standard
deviations of the directional differences reported were between
10 and 37 . The spectral method works fine on open oceans,
and large image areas, such as km .

Working in the spatial domain by evaluating the local gradi-
ents, the new method automatically localizes features not caused
by wind and ignores the affected points. The means for locating
ocean features are given in this paper, while the land sea dis-
crimination is done using coastline data, e.g., from the generic
mapping tool [11].

As no specific shape of the evaluated subimages is required, it
can be chosen to match the grid cells of a numerical atmospheric
model. This simplifies the comparison with model winds or the
assimilation into wind models by omitting the spatial interpola-
tion. We compared modeled wind vectors with wind directions
from the local gradients of 159 image products from the Euro-
pean Remote sensing Satellites 1 and 2 (ERS-1 and ERS-2). In
total, the directional error was 17.6 with a bias of , and a
clear trend of the error to decrease with increasing wind speed
was observed.

Last, but not least, the new method in particular cases allows
a spatial sampling down to km .

II. LOCAL GRADIENTS METHOD

The ideal image of a streak is about constant along its direc-
tion and strongest varying about orthogonal to its direction. As
the direction of strongest increase is given by the gradient, the
direction of a wind streak is about orthogonal to the gradient di-
rection. The wind direction, assumed to be parallel to the wind
streak, is thus also perpendicular to the direction of the gradient.
Although due to the multiplicative noise present in SAR images,
any gradient direction could be present, there is a preference
toward the correct orthogonal direction. Thus the new method
computes the local gradients with standard image processing al-
gorithms, and chooses the orthogonal of the most frequent gra-
dient direction to be a possible wind direction. In analogy to
the spectral method, where the signal of the wind streaks was
searched for at wavelengths from 500–1500 m, the gradients
are computed on SAR images reduced to 100-, 200-, and 400-m
pixels. Fig. 1 shows an example for a 5-km sampled wind field
with directions computed from 100-m pixels. The scene was ac-
quired by the ERS-1 SAR on August 12, 1991, 21 : 08. Wind
streaks are visible all over the image. Wind shadows are ap-
parent east of the island. Wind reported from a meteorological
station at Cape Arkona at the north tip of Rügen was more than
10 m/s from 282 . At a couple of locations the nonambiguous
directions were manually selected, while at the other subimages
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Fig. 1. ERS-1 SAR image of Rügen from August 12, 1991, 21 : 08. Wind streaks are visible over the entire image. Wind shadows are apparent east of the island.
Wind reported from Cape Arkona at the northern tip of Rügen was more than 10 m/s from 282 . The black arrows are wind vectors computed from the image on
a 5-km grid.

the directions were automatically selected to align with already
unique directions at adjacent subimages. Some wind vectors
were manually removed because they were obviously wrong,
but the remaining wind vectors form a flow pattern that is con-
sistent with the measured wind direction, and with the wind
streaks and shadows visible in the image. This is a strong indica-
tion that the computed directions are indeed the wind directions.

A. Reducing the Image Size

The new directional analysis acts on SAR amplitude images
reduced to 100-, 200-, and 400-m pixels. Image reductions to
half size are done with the operator throughout this paper.
The operator comprises smoothing of the image, resam-
pling, and once again smoothing. Its exact definition is given

in (33) in the Appendix. However, most of the SAR images do
not come as amplitudes on 100-m pixels. Hence, they need some
preparation before the analysis can start.

• RADARSAT ScanSAR images are provided as matrix of
indices of a lookup table for the normalized radar cross
section (NRCS), e.g., on m pixels. The square
roots of the NRCS were taken as image amplitudes. The
images were reduced to m pixels with .

• ERS SAR precision images (PRI) give amplitudes on
m pixels. The image reduction was done by

.
• ERS single-look complex (SLC) images give complex am-

plitudes. The pixels projected on the ground range are
about m . The roots of the averaged squared mag-
nitudes of 1 5 pixels were used to come to m
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pixels. The image reduction to m pixels was
done with

For the definitions of the operators, please refer to the
Appendix.

The operations suggested above approximate isotropic lowpass
filters, whereas for example box averaging does not. In the worst
case box averaging may yield moire effects, e.g., see [12, ch. 10]
or [13]. Although the noise present in SAR images will obscure
moire effects, it is suggested to avoid box averaging.

B. Computing the Local Gradients

The components of the gradient are computed with the opti-
mized Sobel operators

(1)

and its transpose.

(2)

Using (1) and (2), the gradients are computed from the am-
plitude image , stored as complex numbers (3) and squared.
Hence, any gradient and its negative yield the same value. This
operation will later be compensated by taking the square root,
but meanwhile saves any special considerations for 180 ambi-
guities. As (1) and (2) imply already some smoothing, the image
of squared gradients is reduced and smoothed with (4). The
same smoothing and reduction is done for the magnitudes of the
squared gradients (5). From the triangular inequality, it is clear
that the magnitude of the average (4) is smaller than the average
of the magnitudes (5), and the better the squared gradients agree,
the lesser is the difference. Where the gradient is nonzero, the
quotient is thus taken as a measure of directional coherency (6)

(3)

(4)

(5)

(6)

The systematic errors in the retrieved directions are shown for
some operators in the textbook of Jähne [12, ch. 11]. The error
is tested by applying the operators on a circular test pattern with
wavenumbers smaller than 0.7 times the Nyquist wavenumber.
With errors being between and , the optimized
Sobel operators (1) and (2) are much better than the common
Sobel operators with errors between and . Further-
more, the effect of noise on the directional error is relative small,
so the optimized Sobel is accurate and robust as well. So, it is
crucial not to replace the optimized Sobel operators with simple
Sobel operators or differences, because that would dramatically
increase the directional error.

C. Unusable Points

Having computed all local gradients, the values corre-
sponding to the following points are discarded.

• The first and last two rows and columns of the image,
because as mentioned in the Appendix, the convolutions
applied are exact only at inner image points.

• Land points: The coastline database of the generic map-
ping tool [11] may be used for the land–sea discrimination.

• Points corresponding to nonwind features, if necessary, as
localized for instance by the automatic algorithm given in
Section III.

D. Extracting the Main Directions

The main direction for a subimage is determined by the po-
sition of the maximum in the smoothed histogram of weighted
usable local gradients. For each defined subimage, this yields
three values stemming from the different pixel sizes used. The
scheme given below resulted after testing several different num-
bers of histogram intervals, different powers for the weights, and
different smoothing. It works with only a few and with ten thou-
sands of gradients.

For the usable points belonging to the selected subimage, a
second quality measure is computed from the magnitudes of the
directional information (4)

median subimage
(7)

The directional values are sorted in 72 intervals. For each
interval, the sum of the normalized complex values from (4)
multiplied by their two quality measures from (6) and (7) is
computed.

This histogram is smoothed with and interpo-
lated. The magnitude maximum on the interpolated histogram
then gives the main squared gradient; the square root gives the
main gradient; and the orthogonal to the main gradient defines
the searched 180 ambiguous main direction.

Fig. 2 shows a sample histogram from a 10-km subimage
from Fig. 1. All intervals are populated, but there is a distinct
maximum defining the main squared gradient.

It should be noted that if multiple relative maxima are present
in the histogram, all of them could be used to retrieve a direction.
It should be noted as well that the derived directions are not
quantized.

E. Accuracy of the Main Directions

The accuracy of the local gradients method was tested with
artificial SAR images. Test patterns were created on an array
with 400 400 points simulating a km subimage of an
ERS SAR PRI. The test patterns show sine waves with a con-
stant wavelength of 1 km or with varying wavelengths of 1 km at
the center. Fig. 3 shows both types of test images smoothed and
reduced to 100-m pixel size. The test images were processed as
described in this section, and the magnitude of the directional er-
rors were less than 0.25 , except for the pattern with a constant
wavelength of 1 km where 400-m pixels were used. Clearly, a
pattern with 1-km wavelength is not adequately sampled with
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Fig. 2. Histogram of weighted and squared local gradients. The wind direction
is determined from the magnitude maximum of the smoothed histogram.

(a) (b)

Fig. 3. Smoothed 5�5 km artificial test images reduced to 100-m pixel size.
The left image shows a variable wavelength test pattern, while the right shows
a pattern with constant wavelength and noise.

400-m pixels. Next the SAR typical speckle noise was applied to
the test images, increasing the magnitude of the errors to about
1 with the same exception. The directional errors start to in-
crease when the ratio of the amplitude of the test wave pattern
to its average becomes less than 1/50. So, the anticipated accu-
racy of the method, close to 1 , is quite high.

F. High-Resolution Examples

Fig. 4 shows a km subimage close to the center
of Fig. 1. Wind directions are computed from 100-m pixels
on a 1-km grid. As computing local gradients involves further
smoothing and reduction, at most 25 values are available for the
histograms. Due to the low number of gradients available, sec-
ondary maxima in the histogram occur more frequently. Again,
directional ambiguities were removed by manually selecting
unique directions in some of the subimages and aligning the rest
automatically. Dark and white arrows indicate discarded and ac-
cepted wind vectors, resepctively. The arrows are scaled with
the wind speed, which is approximately 5 m/s in the average.
It is obvious that the computed directions are not random. The
general direction is diagonal, as was to be expected referring
to Fig. 1. It seems the white arrows form a wind field that fol-
lows the course of the channel. Figs. 5 and 6 show an ERS-2
image from February 13, 2000, 10 : 50 of the Sogne Fjord in
Norway, image center at 61.1 N and 5.3 E. The area is on
the western side of an atmospheric low. Wind shadows vis-
ible in the image indicate the wind direction being from left
to right. Computed from 100-m pixels, the white arrows form

Fig. 4. Wind field in Der Bodden that separates Rügen from the mainland.
Black arrows indicate rejected wind vectors, and the white arrows form a wind
field that follows the channel. Mean wind speed is about 5 m/s.

wind fields on 20-, 10-, 5-, 2-, and 1-km grids that are strongly
influenced by orography. The number of gradients available for
the histograms varies from several thousand to less than 25 per
subimage. Unique directions are obtained similar as before by
selecting directions for one or two subimages and aligning the
rest. Again, dark and white arrows indicate discarded and ac-
cepted wind vectors, resepctively. The arrows are scaled with
the wind speed, which is around 6 m/s. Directions retrieved from
a spectral method are indicated by black bars. Both directions
agree to some extent. Agreement is best on large subimages,
but even for 1-km subimages, there are a few areas with good
concent.

III. IMAGE FILTERING

Fig. 7 shows an ERS-1 SAR image of a storm in the German
Bight. There are dry wadden areas and linear features caused
by tidal currents that need to be located. This can be done auto-
matically using results and intermediate results from the com-
putation of the local gradients. In Section III-A, four parameters
are defined that do not depend on the particular image product,
incidence angle, wind speed, and so on. By comparing the his-
tograms of these parameters from images with nonwind gen-
erated features and the histograms from images without them,
the parameter ranges indicating bad values, good values, and
the transitions were identified. The four parameters are then
combined to a quality measure (22) that assumes values from
zero to one. Gradients are considered unusable where a revi-
sion of this measure is less than a threshold of 0.6 for an area
of at least 1 km , or where a small object, e.g., a ship, is in the
image. The algorithm used for revising the measure is detailed
in Section III-B. Fig. 8 shows the result of the image filtering
for the SAR image shown in Fig. 7. Areas in black and light
gray are considered unusable by the image filter. Areas in white
and light gray are land, according to a coastline database. The
dry wadden areas and linear features caused by tidal currents
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Fig. 5. ERS-2 SAR image of the Sogne Fjord from February 13, 2000, 10 : 50, image center at 61.1 N and 5.3 , with wind fields computed on 20� 20 km ,
10�10 km , and 5�5 km subimages, indicated by white arrows. Wind directions were computed with local gradients from 100-m pixels. Black bars give wind
direction computed with a spectral method.

are successfully located. However, land is not always detected.
Thus, this image filtering would not spare the use of a coastline
dataset.

A. Quality Parameters

The first parameter defined (12) is the quotient of the stan-
dard deviation (11) and the mean (9) of some neighborhood of

every point of the smoothed and reduced image (8). The
local second moment of the amplitude image is computed
according to (10). Extended areas that are not open ocean sur-
faces, as land, tidal flats, or sea ice are detected in this way (13),
but edges or very narrow features are not

(8)
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Fig. 6. ERS-2 SAR image of the Sogne Fjord from February 13, 2000, 10 : 50, image center at 61.1 N and 5.3 , with wind fields computed from 2� 2 km ,
and 1 � 1 km subimages, indicated by white arrows. Wind directions were computed with local gradients from 100-m pixels. Black bars give wind direction
computed with a spectral method.

(9)

(10)

(11)

(12)

linear, else.
(13)

The second parameter (15) is the squared quotient of the high-
pass filtered image (14) and the local mean (9). This corresponds
to the Laplace pyramid introduced in chapter 5 of [12]. The mea-
sure (16) detects the interior of narrow image features, as slicks,
internal waves, or fronts.

(14)

(15)

linear else.
(16)

The third parameter (18) is the quotient of the magnitude of the
squared local gradient (5) and its local mean (17). This measure
(19) detects edges of narrow image features, and point targets
give a particular strong signal.

(17)

(18)

linear else.
(19)

The last parameter is the square root of the coherency (6). It
is largest on well defined edges. The measure (21) detects the
edges of narrow image features, as slicks, internal waves, or
fronts.

(20)
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Fig. 7. ERS-1 SAR image of a storm in the German Bight from January 27,
1994 10 : 25. Dry tidelands and structures caused by tidal currents need to be
located.

Fig. 8. Mask generated from the quality measures. White and light gray cover
land as extracted from a coastline database. Light gray and black cover areas
not considered for directional analysis, because they are flagged in the image
filtering. Dark gray are the usable areas.

linear else.
(21)

The four measures (13), (16), (19), (21) are combined by com-
puting the root-mean-square average (22)

(22)

B. Revision of the Filter

Comparing the combined measure (22) to a threshold of 0.6
gives a somewhat ragged distribution of bad points. There will
be plenty of small clusters with no corresponding features in
the amplitude image, and some lines of small clusters that cor-
respond for instance with fronts. After connecting the cluster
lines the remaining isolated clusters could be removed by re-
quiring a minimal size for them. Those clusters corresponding
to small objects such as ships or oil rigs have to be identified
separately.

The linking of clusters can be achieved by referring to the
adjacent pixels in the image with doubled pixel size, because
the clusters tend to combine to lines there. Hence, the algorithm
below proceeding from large pixel sizes to small ones will link
the cluster lines.

1) The measures are computed for pixel sizes of
m , m , m , and m .

2) For pixel sizes of m , m , and
m , where the measure of a reduced image is

available, it is merged with the measure just computed in
step 1). This means the measure of any pixel is averaged
with the measure of that one of the four adjacent coarser
pixels that is closest to its own original value.

3) Points with a measure of at least 0.6 are considered
usable.

4) Connected usable points, that represent an area of less
than 1 km , are changed to unusable. This applies for
pixel sizes of m , m , and

m , where the number of required pixels is 2, 7, and
25. Pixels are considered to be connected when they have
a common side.

5) Connected unusable points, that represent an area less
than 1 km , are changed to usable.

6) For pixel sizes of m , m , and
m the measures of connected unusable points,

are replaced by their average. This information is used for
the linking of the next smaller pixel size in step 2). Fig. 9
shows this stage on m pixels for the image
shown in Fig. 7.

7) Small objects, as for example ships or oil rigs, have to be
identified with the parameter in (18), because the corre-
sponding clusters of bad points could have been removed
in step 5). Hence, points with , and their neighbor-
hood are flagged unusable. This completes the informa-
tion required in Section II-C.

IV. INTERPRETATION

The local gradients method comes up with at least three 180
ambiguous suggestions for the wind directions stemming from
the different pixel sizes used for the analysis. From Section II-D
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Fig. 9. Image quality, the brighter the points the better the quality. Connected
unusable points have the same color.

it is known that the directions of patterns that are present in
the image are accurately measured, but from a noisy image
without any structure, a direction will be suggested as well. Con-
sequently, for a single area of interest it is not known whether
the suggested direction is related to wind, but looking at the con-
text it becomes clear that the derived directions are nonrandom.
Having a field of directions that form a flow pattern therefore
strongly indicates physical reasons. When the produced field ad-
ditionally is aligned with obvious wind features as shadows or
visible rolls the confidence grows. Considering the wind speed
computed with the suggested directions helps the interpretation,
as for example in Figs. 4 and 6 some of the discarded wind vec-
tors show unfitting large wind speeds.

The available experience suggests to take 100-m pixels for
shallow seas, that are sheltered against long swell, as are the
North and the Baltic Sea. Images of open seas which show the
signature of long ocean waves, e.g., the Norwegian Sea are best
smoothed and sampled to 200-m pixels. Pixel sizes of 400 m
were only used in some rare cases.

V. SUMMARY

A new method is at hand for estimating the wind directions
directly from SAR images. It gains robustness, flexibility, and
spatial resolution by direct evaluation of the amplitude image.
Together with external topographic information, the proposed
image filter localizes the areas in SAR images that show non-
wind features and excludes them from evaluation. This enables
SAR wind evaluation directly at the coastline and over narrow
inland waters. The investigated subimages may be tailored to
match the grid cells of numerical meteorological models, thus

allowing comparison with or assimilation into models without
spatial interpolation. The error in estimating directions of
patterns in artificial SAR images is about 1 using an appro-
priate pixel size. The accuracy in real SAR images should
be so well that the difference between the pattern direction
and the wind direction dominates the overall directional error.
Hence, the proposed method gives a promising alternative
to the established techniques of wind direction estimation.
The new method is designed to work with subimages of arbi-
trary size down to 1 km without modifications. No manual
intervention is required until the method presents directions
based on 100-, 200-, and 400-m pixels, usually one per pixel
size and subimage. Removal of the 180 ambiguity is done
semiautomatically by manually selecting unique directions on
some subimages and automatically choosing the best aligned
directions in the remaining subimages.

APPENDIX

The descriptions of the algorithms are based on several basic
operations that are given below. Sums and differences of opera-
tions are to be interpreted as pointwise sums or differences of the
images resulting from the operations. Products with scalars are
to read as the pointwise product of the scalar and the image re-
sulting from the operation. Products of operators are to be read
as applying the operations one after the other, rightmost first.
Powers of operators denote multiple application of that oper-
ator. The identity is denoted as . Most of the employed oper-
ators are convolution kernels. Let be an operator and an
image. Then, is defined pointwise by

(23)

From the definition, it is clear that the points at the image bound-
aries cannot be defined accurately. The undefined values are
either substituted by zeroes or by copying the closest defined
value. For smoothing operations in various directions, binomial
operators are used to replace the generic operator in (23)

(24)

(25)

(26)

(27)

(28)

(29)
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A numerical subscript means that the dimensions of the
convolution kernel are extended by adding zero rows and
columns, e.g.,

(30)

(31)

A local mean is computed with the following operator:

(32)

Reduction of an image is denoted by . The subscript with
the vertical line gives the factor of the image reduction, e.g.,
means an image reduction to half dimensions. Most frequently,
image reduction is used together with smoothing

(33)

Expanding of an image by a factor of two is done by first
copying and interpolating intermediate columns of the image as
follows:

(34)

The same is done with the rows of the resulting image. The
composed operation is denoted as .
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